
Spacetime Constraints Attempted

Taylor Shaw

Friday September 14, 2001

1 Introduction

For my research project this summer with Professor Nancy Pollard, I attempted
to implement a character animation system similar to the one described in
Witkin and Kass’ 1988 SIGGRAPH paper “Spacetime Constraints” [19]. My
initial interest in this project arose while I was thinking about ways to ensure
that character animations were physically correct. Typically, hand-animated
character motion, and even most motion capture data, gives rise to animations
which are physically impossible. That is, given the computer representation of
the physical properties of the character, the animation does not satisfy New-
ton’s laws of motion. This is a problem particularly when the animation is
transformed by changing physical parameters because small deviations from
physically correct motion could potentially be transformed into large, undesir-
able artifacts.

Spacetime Constraints is a method of animation in which the animator spec-
ifies certain constraints that a character’s motion must satisfy and instructs the
computer to solve for the correct motion. Typically one of the constraints that
is enforced is that the motion be physically accurate. Thus, the spacetime con-
straints method seemed to me to be a good way to approach the problem of
constraining an existing motion to be physically correct.

My project, then, was an attempt to implement a spacetime constraint ani-
mation system which could be used to generate character animation as well as
modify existing animations. Unfortunately, this goal was quite a bit too lofty.
The difficulties of implementing a working spacetime animation system proved
much greater than I had anticipated, and ultimately I was unable to apply my
efforts to characters of more than trivial complexity. However, I did learn a
great deal about how to implement spacetime constraint animation, and have a
much greater appreciation for why no commercial software packages currently
support it. I hope that my work can at least provide some advice for future
implementations.

The remainder of this paper is organized as follows. Section 2 presents a brief
survey of the major papers related to spacetime constraints. Section 3 gives an
overview of the spacetime problem formulation and Section 4 introduces the
design of my program. Sections 5, 6 and 7 discuss implementation details of

1

specific aspects of the design. Section 8 presents my results. Section 9 contains
lessons I have learned from this project and other concluding remarks.

2 Related Work

There are two traditional approaches to computer animation. One approach
uses the computer to enhance traditional animation tools, and leaves control of
the animation largely up to the artist. This method of animation has the disad-
vantage that it does not fully utilize the power of the computer to automatically
generate convincing animations and requires a skillful artist to get decent re-
sults. The second approach is that of physical simulation. In this approach
the motion of objects is calculated based on their physical properties and the
external forces acting upon them. While it creates physically accurate motion,
the animator is left with very little control over the resulting animation.

Witkin and Kass [19] introduced the Spacetime Constraints method of ani-
mation as a compromise between these two extremes. They solve for a charac-
ter’s motion over the entire time range of the animation simultaneously. Thus,
constraints imposed at particular times will have effects both forward and back-
ward in time. The animator creates constraints on the character’s motion to
specify what tasks the motion must accomplish, as well as constraints to ensure
that the motion is physically correct. In addition, the animator specifies an
objective which determines how a motion should be performed. This provides
the animator with significantly more control over an animation than pure simu-
lation, yet does not sacrifice physical accuracy. Brotman and Netravali [2] have
obtained a similar result using Optimal Control methods.

The problem with Spacetime Constraints is that solving for the optimal ani-
mation, as well as setting up the problem in the first place, is extremely difficult
and time-consuming. The method has not yet been implemented in any com-
mercial software (to my knowledge) precisely for this reason. Thus, most of the
research done on spacetime constraints has revolved around making the method
faster or more user-friendly. Cohen [4] describes a prototype implementation
of a more usable spacetime animation system, using the concept of spacetime
windows. Gleicher [9] [10] simplifies the spacetime problem by relaxing its re-
quirement of physical accuracy, thus speeding up the solution process. Rose
et al. [16] and Popovic and Witkin [13] simplify the problem by applying the
spacetime method to very small intervals of time.

Similar problems have been solved through the use of simulated annealing,
genetic algorithms [12] [18], and monte carlo methods [3]. For this project I
briefly considered using a monte carlo method, and looked into genetic algo-
rithms a little. My feeling, however, is that these methods are not particularly
well suited to the spacetime animation problem because it is concerned with find-
ing a single, optimal solution. Randomized methods are very good at generating
large sequences of pretty good solutions, but are much slower than normal nu-
merical optimization at finding the single, locally optimal solution of a problem.

2

3 Spacetime Constraints

The spacetime constraints approach is unique in that it formulates the process of
generating an animation in terms of an optimization problem on the degrees of
freedom of a character model. In my implementation, the degrees of freedom, S,
of a model refer to the generalized coordinates that determine its position. That
is, each character is modeled as a linked chain of rigid bodies, and its position
is completely determined by the joint angles of this linkage. Each degree of
freedom, Sj , varies over time and therefore is a function of a time variable, t.
Following [4], I represent each Sj with a uniform cubic b-spline. Thus, every
degree of freedom Sj is actually a function of a number of control points, X .
Unlike the discrete method presented in [19], using b-splines has the advantage
of guaranteeing that each degree of freedom will be twice-differentiable at every
possible value of t. It also allows us to limit the number of independent variables
in a problem by spacing the X farther apart in t.

A user specifies what an animation should do by creating a set of constraints,
C(S) = 0, on the the degrees of freedom. That is, a constraint is any function
on S which is equal to 0 at a given value of t. For example, constraints can
be used to specify that a character be at a certain position at a certain time.
Constraints are also used to ensure that an animation is physically possible. To
do this we simply constrain the generalized force at the root of a character to
always be equal to zero. This is sufficient to enforce the dynamic correctness
of a motion. Constraints also arise as properties of a character model. For
example, constraints may be imposed to limit the amount of force that can
be applied at a particular joint. Constraints over a range of time are handled
by creating multiple constraints at discrete time intervals. Currently, I do not
support inequality constraints because they add additional complexity to the
numerical optimization process.

The animator also specifies how a motion should be performed by supplying
an objective function, R(S), which must be minimized. Typically this function
minimizes the amount of force exerted by a character’s joints, but in theory it
can be any function of the degrees of freedom. Currently, my implementation
just minimizes the sum of the squares of the generalized force at each joint of
a character. I had wanted to explore more interesting measures of optimality,
such as minimizing power or motion smoothness, but was not able to get to
this.

The set of constraints and objective together constitute a nonlinearly con-
strained optimization problem which must be solved to yield the values of X
which minimize R subject to C. The solution to this problem is the optimal
character motion for the given situation.

4 Design Overview

Figure 1 illustrates the basic design of my system, which is written in C++ using
a Qt GUI. The heart of the system is the Expression Manager. This class is

3

Problem Agent

Control

ActorExpression
Manager

Expression

Bone

Geom

Expression Subclasses

Actor Subclasses

Problem Subclasses

Figure 1: Overview of design

responsible for managing the creation and optimization of every symbolic math
expression used in the program, and is referenced by nearly every other major
class. It contains a list of all expressions, as well as various subsidiary lists
of specific types of expressions, such as variables, which are maintained for
efficiency reasons. The Expressions themselves are atomic units such as Sin or
Sum, which can be combined in a tree structure to form larger expressions. They
are capable of returning their own derivatives as well as optimizing themselves.

Above the expression manager, the system is conceptually divided between
the two tasks of character specification and spacetime problem solution. The
Actor is the abstract superclass of all characters, and contains a hierarchy of
generic Bone objects stored in a tree structure which reflects their physical
linkage. Each bone knows about its parent and children bones and is able
to recursively generate symbolic expressions for any quantity necessary for a
spacetime problem (such as its generalized position, velocity, force, etc.) using
the equations of rigid body dynamics. Each bone is associated with a Geom
object which encapsulates physical properties of the bone, such as its mass,
inertia tensor and bounding box. This allows the logic of the Bone class to
be used for bones of any size or shape. Each Actor subclass is responsible
for creating and managing its bone tree as well as handling user requests for
symbolic expressions describing properties of specific bones. All instantiated
actors are managed by the Agent (get it?), which is responsible for generating
any expressions involving multiple actors, as well as providing the user interface
with information about the actors.

The Problem is the superclass for all methods of solving a given spacetime
optimization problem and is essentially just a container for constraint and objec-
tive expressions. It has methods which the user interface calls to add constraints
and objectives, as well as to indicate which variables should be treated as in-
dependent. Problem subclasses use the constraint and objective information
in whatever way necessary to find the values of the given independent vari-

4

ables which minimize the objective function. The problem also provides various
methods which allow the user to control the progress of the solution process.

The Control is currently a substitute for a fully realized user interface. In
theory, the UI would allow the user to create actors by communicating with
the agent. It would also let the user request expressions from an actor and add
them to the problem as constraints or objectives. Because I did not have time
to complete a UI, however, these operations are currently hard-coded in the
control to set up specific test problems.

Other Elements of the user interface which I implemented but are not in-
cluded in Figure 1 are an OpenGL window with movable camera and time slider
for displaying animations, and a graphing widget which can display the value
of any expression over time.

5 Symbolic Math Package

When solving a spacetime optimization problem it is necessary to be able to cal-
culate the first, and sometimes the second, partial derivatives of the constraint
and objective functions. Since these functions can be arbitrarily complex, and to
avoid taking derivatives by hand, it is necessary to develop a system which can
differentiate equations automatically. I therefore implemented a symbolic math
package capable of calculating the value and gradient of complex multivariate
functions. Previous spacetime approaches (e.g., [4]) have utilized existing sym-
bolic math libraries such as Maple to this end. I decided, however, that for
learning purposes it would be more interesting to try to write my own.

Every function or value in my program is composed of a group of atomic
Expression objects, arranged in a directed acyclic graph structure (basically
an expression tree in which repeated subtrees are shared by multiple parents).
Even simple values like physical constants are represented by expressions. Thus,
things like the radius of a sphere, or the mass of Luxo’s base, which are usually
given constant expressions for simplicity, could instead be assigned to be a
function of any other variable in the program. This makes the system extremely
adaptable and versatile. For reference, a simplified version of the header file for
the Expression superclass is shown in Figure 2.

Each Expression subclass is capable of performing a single, simple compu-
tation. The system currently supports expressions for basic arithmetic opera-
tions (+,−,×), sine, cosine, exponentiation, constants, variables, and b-splines.
Variables are expressions whose values can be modified by either the user or
the spacetime problem. All expressions, with the exception of variables and
constants, are associated with child expressions on which they operate. Thus, a
complicated function built by compositing simpler expressions is represented as
an expression tree, with variables and constants at the leaves. Some expressions
(like Sum and Product) operate on lists of children for efficiency reasons.

The large number of expressions generated when setting up spacetime prob-
lems makes it essential to avoid the creation of duplicate expressions. Thus
the Expression Manager handles the creation of new expressions and stores all

5

class Expression {
public:

double calcValue(); // functions for calculating values
Expression* calcPartial(Variable* var);
double* calcGradForward(int gradSize);
void calcGradReverse();

Expression* optimize(); // optimization functions
bool isZero();
bool isOne();

// various accessors here

protected:
double value; // the actual value of the function
bool valueDirty;

double* gradient; // for forward differentiation
bool gradientDirty;

double revVal; // for reverse differentiation
};

Figure 2: Expression superclass header

created expressions in a large STL map keyed on a unique expression hashcode1.
When the manager receives a request to create a new expression, it looks for an
existing expression with an identical hashcode. If one exists, it simply returns
the old expression, otherwise it creates the new expression and stores it in its
map. This system ensures that no duplicate expressions are ever created, and
that common subexpressions are reused maximally. This is beneficial because
the value of a common subexpression only needs to be computed once. Each
expression class will only evaluate itself if it is “dirty.” That is, if it has not yet
been evaluated, or if the value of one of its child variables has been modified.
The expression manager is responsible for setting an expression’s dirty flag when
appropriate. When an expression is evaluated, it simply recursively calculates
the values of its children and returns the result of performing the appropriate
operation on them.

Witkin and Kass [19] also implemented a symbolic math package similar to

1The “hashcode” of an expression is simply an STL string representation computed by
recursively traversing the expression graph. This is definitely not the most memory- or speed-
efficient hashcode to use. I only did it this way for simplicity.

6

the one I developed. However, their approach differed in that their symbolic
expressions were capable of generating a compiled lisp code for evaluating the
various functions needed for the optimization problem. I chose not to take
this approach because I assumed that the speed of C++ on modern computer
architectures was sufficient enough not to warrant precompiling the spacetime
expressions. In retrospect, however, I think that Witkin and Kass’ approach is
still justified, and is perhaps the only means to get decently fast solutions to
spacetime problems. Were I to attempt a new implementation, I would use my
expression graphs to generate C code which could be compiled directly into the
solution process.

5.1 Expression Optimization

Before the expression manager adds a new expression to its map, the new expres-
sion is symbolically optimized for best performance. Each Expression subclass
has an optimize method which analyses the types and values of any children
and returns an equivalent expression which has been algebraically manipulated
into a simpler form. For example, the expression x + 0 + 1 simplifies to x + 1.
Because this optimization is done whenever any expression is created, it will
often simplify expressions recursively. For example, the expression x × (x + 1)
will distribute to (x× x) + (x× 1) which is then simplified to (x× x) + x when
the expression (x × 1) is created. Note that we do not form x2 + x because
in this case the power operator is computationally more inefficient than simple
multiplication. In order to perform this optimization efficiently, each expression
knows about its type, as well as whether its value is zero or one (which can only
be true for Constants).

5.2 Differentiation

There are many methods of calculating the gradient of symbolic expressions.
I implemented three of them with the aim of comparing the relative merits
of each. The first, and simplest, is just to generate a new symbolic expres-
sion for each partial derivative. This is done in a straightforward manner by
simply recursing through the expression graph and telling each expression to
differentiate itself with respect to a given Variable expression. For exam-
ple, if a Product expression with two child expressions, f(x,y) × g(x,y),
is differentiated with respect to the variable x, it returns the new expression
f(x,y)×(g(x,y)->calcPartial(x)) + (f(x,y)->calcPartial(x))×g(x,y).
This method has the advantage of being simple, but has the disadvantage of gen-
erating many new expressions which take up a lot of memory. It is also relatively
slow to individually evaluate each partial expression in the gradient.

The other methods I implemented were originally proposed in [11] and rec-
ommended by [9]. They are variants of what is called automatic differentiation
and are significant because they calculate the entire gradient of a function by
only walking through the expression graph once. In theory, then, they provide

7

a much faster method of taking derivatives than generating symbolic partial
expressions.

The forward mode of automatic differentiation proceeds as follows. At each
expression node, the complete gradient of the subgraph rooted at that node is
stored. The expression calculates its gradient by looping through its children
and, for each child, forming the scalar product of the child’s gradient and the
expression’s partial derivative with respect to the child. This vector is then
added to the expression’s gradient value. Pseudocode for this process is given
in Figure 3.

calcGradForward(numVars)
gradient ← vector of size numVars
for each child do

part ← value of partial deriv wrt child
childGrad ← child.calcGradForward(numVars)
childGrad.scale(part)
gradient.add(childGrad)

end
return gradient

end

Figure 3: Pseudocode executed when visiting an expression node during forward
differentiation.

For this routine to work correctly, each Variable expression is assigned
an index into the gradient. At the variable leaves, the calculated gradient is
simply zero everywhere with a one in the gradient position corresponding to the
variable’s index. This approach allows us to calculate the gradient with respect
to only a subset of the independent variables by simply not setting the index of
the variables we do not care about.

The forward mode is able to take advantage of repeated subexpressions be-
cause the gradient at an expression node only needs to be calculated once.
However, it has the disadvantage that at every node the entire gradient must
be calculated and stored, which wastes memory and time if every expression
depends on only a small subset of the independent variables.

The reverse mode of automatic differentiation, on the other hand, only re-
quires that a single scalar quantity be maintained at each expression node. The
algorithm executes a breadth-first, preorder traversal of the graph, and at each
node executes the pseudocode shown in Figure 4. For each child of a node we
multiply the stored value at the node, revVal, by the partial derivative with
respect to the child and then add that value to the child’s revVal. We can de-
fine revVal at the root to be any value by which we wish to scale the gradient
(usually 1). When the traversal terminates, the stored scalar value at a variable
leaf is equal to the partial derivative of the entire expression with respect to that

8

calcGradReverse()
for each child do

temp ← value of partial deriv wrt child
child.revVal += (this.revVal × temp)

end
end

Figure 4: Routine executed at each expression node during reverse differentia-
tion

variable. In theory this executes considerably faster than the forward mode be-
cause many fewer quantities must be updated at each node. The disadvantage
of the reverse mode, however, is that because the revVal of a child expression
depends on the revVal of the parent, the algorithm cannot take advantage of
common subexpressions, as in the forward mode. In practice, which mode is
better depends on the situation. I implemented a simple operation counting
mechanism to help determine which mode was more appropriate for a given set
of equations.

The forward and reverse modes are, in theory, capable of also calculating the
value of second and higher-order derivatives in a similar manner. My implemen-
tation, however, only supports the calculation of first partial derivatives. When
the Hessian of a function is needed, my approach is to symbolically calculate
the gradient expression and then automatically differentiate the first partials.
This approach works, but significant speedups can be achieved by supporting
second-order automatic differentiation.

5.3 B-Splines

Cubic B-Splines are a special type of expression because the method in which
they calculate their value is dependent upon the value of an external expression
(i.e., the time variable). I struggled for a long time to figure out how to integrate
b-splines with the rest of the symbolic math framework, and ultimately came
up with a solution which is not particularly elegant, but works correctly.

Each B-Spline object is given a set of data points to interpolate, from which
the values of the initail b-spline control points, X , are calculated. These control
points are the main independent variables of a typical spacetime problem. The
b-spline also contains subexpressions for each of its four basis functions, B.
To calculate the value of the b-spline at time t, it is necessary to find the
curve segment active at time t, and the the distance along that curve in t
(i.e., a value between 0 and 1). Then the four control points active at t are
found and the value of the b-spline is simply Sj(t) =

∑4
l=0 Xj,lBl(t), where

Xj,l are the values of the jth degree of freedom’s active control points. To
take the derivative of b-splines, we first check whether the variable in question
is the time variable. The partial derivative of the spline with respect to the

9

time variable is generated by simply returning a new b-spline with identical
control points, but the derivatives of the basis functions as new bases. That is,
Ṡj(t) =

∑4
l=0 Xj,lḂl(t) and S̈j(t) =

∑4
l=0 Xj,lB̈l(t). The partial derivatives of

the b-spline with respect to any of the control points is simply the basis function
active for that control point at time t, or 0.

5.4 Other Classes

In addition to the expression manager and various expression subclasses, the
symbolic math package has some classes which function as expression containers,
and allow expressions to be operated on in specific ways. Matrices and vectors
are two examples of these. The Matrix class is an n× n matrix of expressions
and supports operations like transpose and matrix multiplication. The Vector
class is a subclass of Matrix and extends it to support inner product and vector
product operations.

5.5 Problems

The major unexpected problem which arose from my symbolic math imple-
mentation was that the expression graphs generated by even modest spacetime
problems were enormous. With very many (more than 5000 or so) expressions
active for a given problem, traversing the graphs to calculate values and deriva-
tives becomes very slow. While I was careful to cache values and avoid repetitive
computations whenever possible, recursing through hundreds of functions calls
is not fast. More significantly, with enormous expression graphs, memory usage
becomes a major issue. I did not design my expression classes with compactness
in mind, and the program frequently ate up more memory than was available.
Swapping expression instances into and out of memory causes any function
evaluation to quickly grind to a halt. Were I to reimplement my symbolic math
package, minimizing memory usage would be my primary concern. This would
most likely mean not using the STL for data structures, since the STL lists,
maps and strings created for each expression were the main cause of memory
consumption.

6 Spatial Rigid Body Dynamics

All the actors in the program are modeled as linked chains of rigid bodies.
Because most of the research on efficient methods of representing linked rigid-
body motion has come out of the robotics community, I use an actor description
based on the Denavit-Hartenburg notation for robot manipulators [5]. Each
bone in the linkage is assigned an index, i, such that the index of a bone is
greater than that of its parent, and no bones have the same index. The ith
joint, then, is the joint between the ith bone and its parent. In this paper
parent and child bones are referred to as i− 1 and i + 1 respectively, though if
the linkage is branched, this convention does not hold.

10

Step 0: Initialization
v̂0 = â0 = f̂n+1 = 0̂

Step 1: Forward Recursion
v̂i = X̂ i

i−1v̂i−1 + ŝ′iq̇i

âi = X̂ i
i−1âi−1 + v̂×̂ŝ′iq̈i

f̂∗i = Î ′iâi + v̂i×̂Î ′i v̂i

Step 2: Backward Recursion
f̂i = X̂ i

i+1f̂i+1 + f̂∗i
Qi = ŝ′Si f̂i

end

Figure 5: Featherstone’s recursive inverse dynamics algorithm

Calculating the forces required at each of the joints in order to produce a
desired actor motion is a type of inverse dynamics problem. The dynamics of
a system of rigid bodies with n degrees of freedom is simply described by a
system of n coupled differential equations. The problem is devising a represen-
tation of these equations which allows for efficient solution. The solution will be
identical no matter which dynamics formulation is used (Newton-Euler, Euler-
Lagrange, Kane, etc.), but the amount of computation done will vary between
representations. For an excellent survey of approaches to this problem, see [1].

6.1 Featherstone’s Formulation

I chose to represent the dynamics equations of the actors in terms of Feather-
stone’s recursive formulation [6]. The main difference between this method and
most other dynamics algorithms is that it uses 6-dimensional spatial vectors to
represent the combined linear and angular components of physical quantities
involved in rigid body dynamics. Inertia tensors are likewise represented by a
6×6 spatial matrix. Spatial vectors are defined in terms of Plücker coordinates.
A line which passes through the point A in the direction a is represented as
(a,
−→
OA× a)T where −→OA is the vector from the origin to A.
Featherstone’s algorithm is shown in Figure 5. Spatial quantities are indi-

cated with a hat (̂) over them. In this figure ŝi, v̂i, âif̂i are the spatial position,
velocity, acceleration and force of the ith link; qi, q̇i, q̈i and Qi are the gener-
alized position, velocity, acceleration and force of the ith link; Îi is the inertia
tensor of the ith link and X̂j

i is the spatial transform from the ith link’s frame
to the jth link’s frame. The spatial transpose and cross product, S and ×̂, are
defined in [6].

The only real advantage of Featherstone’s method is that it reduces the
number of quantities involved in solving various dynamics problems. The im-

11

portant thing to note is that by formulating the dynamics problem recursively
and using a reasonably compact representation for linear and angular quantities,
computing all of the generalized forces requires 130n− 68 scalar multiplications
and 101n − 56 scalar additions. There are certainly other dynamics formula-
tions which involve less computation (e.g., [1]), and even some faster algorithms
which use spatial algebra similar to Featherstone’s (e.g., [15]). Because eval-
uation of the dynamics equations is the major bottleneck during the solution
process, using as fast an algorithm as possible is of the utmost importance. I
used Featherstone’s method, however, because it is decently fast, and simple to
implement. Also, I had already implemented it once, so it was particularly easy
to adapt it to use my symbolic math package.

6.2 Implementation

Actors in my system are modeled following Featherstone’s model of a robot
manipulator. They are a tree of rigid links (bones) starting with a fixed root
and connected by prismatic, rotational or screw joints. Each bone is associated
with the spatial representation of its parent joint, and knows about its parent
and children bones. For simplicity, no cycles are allowed in the linkage. To
create actors with mobile bases, we simply create bones for the x, y and z
position of the base using NullGeom objects, which make these “virtual” bones
invisible and have zero mass.

When a spacetime problem is initially set up, the user asks specific bones
to return expressions for various dynamics quantities. Each bone knows how
to assemble all types of dynamics expressions using Featherstone’s recursive
formulas. For example, if the bone receives a request for its spatial velocity
expression, it executes the algorithm shown in Figure 6. In this code, v is the

Bone::spatialVel()
{

if(parent == NULL){ // we’re the root
v.setZero();

} else {
SpatialVector parentVel = parent.spatialVel();
parentXform.transform(parentVel, v);

}
SpatialVector temp;
temp.scale(this.generalizedVel(), this.spatialPos());
v.add(temp);

return v;
}

Figure 6: The routine for calculating the spatial velocity of a bone

12

bone’s spatial velocity vector and parentXform is the spatial transformation
from the bone’s parent’s frame to the bone’s frame. The code in Figure 6
is functionally identical to Featherstone’s expression for spatial velocity. In
this way expressions for dynamic quantities are generated exactly according to
Featherstone’s equations.

If any external forces will ever need to be applied to a bone, the actor must
create a spatial vector variable for that force and tell the bone about it. The
bone then uses this variable when creating its expressions for spatial force. Any
time an independent variable is changed during the solution process, the actor
is responsible for calculating the current value of the external force and setting
the force variable appropriately. If the external force does not exist (e.g., if it
is a force for handling collisions, and there are no current collisions), the force
variable is simply set to zero. I am sure that this is not the most elegant way
to handle external forces, but I had a lot of trouble devising a better solution.

7 Numerical Optimization

Once the spacetime problem constraints and objective function are fully speci-
fied, all that remains is to solve the nonlinearly constrained optimization prob-
lem. There is no general, guaranteed solution method for problems of this type.
Finding an optimization method which is suited to a particular problem is some-
thing of an art. Some researchers have emphasized simplifying the spacetime
problem to such a degree that the solution can be found by using relatively
simple methods. For example [16] is able to simply use the BFGS method de-
scribed in [8]. Most spacetime work, however, has focused on using variants
of Sequential Quadratic Programming as a solution method (e.g., [4], [9], [13],
[19]). This is the method which I chose to employ.

An SQP algorithm proceeds by solving a sequence of solvable subproblems.
At each iteration, a quadratic program (i.e., an optimization problem with linear
constraints and a quadratic objective, usually in the form of a linear system) is
created which approximates the nonlinear problem at the current values of the
independent variables. The solution to this subproblem determines a direction in
which to step for the next iteration. Typically a line search is used to determine
the step length to take in the calculated direction. A solution is found when
all the C = 0 and the gradient of R is equal to some linear combination of the
gradients of the C.

I considered two methods of solution, that of Cohen [4] and that of Witkin
and Kass [19]. I implemented Cohen’s method first because it seemed simpler
than that of Witkin and Kass. Whereas the Witkin and Kass approach involves
solving two linear systems in sequence, Cohen only solves one linear system
at each iteration. In addition, the matrix involved in Cohen’s linear system is
guaranteed to be symmetric. These features made it seem more promising ini-
tially. However, I came to believe that Cohen’s method is more inefficient than
Witkin and Kass’ because it has a higher likelihood of generating ill-conditioned
matrices, and because it required the use of a line search. Ultimately, I imple-

13

mented Witkin and Kass’ method as well. While I still was unable to solve large
optimization problems with it, it solved small problems much faster. These dif-
ferences could simply result from the details of my implementations so I cannot
make any conclusive claims about the relative merits of either approach. My
feeling is, however, that Witkin and Kass’ solution method is more versatile and
applicable.

7.1 Cohen’s Approach

Cohen suggests minimizing the Lagrangian of the constrained optimization
problem, which creates an equivalent unconstrained problem. The Lagrangian
of the spacetime problem is

L(X, λ) = R(X) +
m∑

i=1

λiCi(X)

where the λi are Lagrange multipliers which roughly represent the influence of
the constraints on the objective. The optimization proceeds by solving

∇2L

[
∂X
∂λ

]
= −∇LT

to yield a step direction in X and λ. Because

∇2L =
[∇2

XXL ∇2
XλL

∇2
λXL ∇2

λλL

]
=

[∇2R + λT∇2C ∇CT

∇C 0

]

the Hessian ∇2L will always be symmetric, extremely sparse, and easy to cal-
culate. In theory, this simplifies the solution somewhat. To solve this system of
linear equations, I adapted a conjugate gradient method for sparse, symmetric
linear systems described in [14] which minimizes the residual, 1

2 |∇2L·X+∇LT |2.
Briefly, the conjugate gradient method for linear systems is similar to the method
of steepest descent, except that it chooses the steepest descent direction which
is also conjugate to all n previously chosen directions. One main advantage of
conjugate gradient methods which solve Mx = b is that they can be written such
that the matrix M is only used to transform vectors. Thus, special optimized
routines to perform this transformation can be written which take advantage of
the sparsity of the matrix M .

Cohen’s method worked reasonably well for small particle problems. How-
ever, it would often blow up if a line search was not utilized. Because evaluation
of the objective function is very slow, and the accuracy of a line search depends
on how many evaluations of the objective are performed, this is a big disadvan-
tage.

I was not able to get Cohen’s method to work for large problems. My
feeling is that by introducing extra independent variables (the λ) and creating
one huge system which minimizes both the constraints and the objective, the
possibility for instability is increased dramatically. Also, the condition number
of the Hessian matrix often becomes extremely high.

14

7.2 Witkin and Kass’ approach

Witkin and Kass’ approach is preferable to Cohen’s method because it breaks
the solution process up into the solution of two smaller systems of linear equa-
tions. First a step X̂ is calculated which minimizes a quadratic approximation
to the objective, without taking the constraints into consideration, by solving:

− ∂R

∂Xi
=

∑
j

HjiX̂j

where Hji is the Hessian of the objective, ∇2R. Then this step is projected onto
the null space of the constraint Jacobian, Jij , by solving:

−Ci =
∑

j

Jij(X̂j + X̃j)

The final step is ∆X = X̂ +X̃. This method is advantageous because after each
iteration the constraints will be very nearly satisfied, so the resulting animation
will look better after fewer iterations. It also has the advantage that a line
search is usually unnecessary. The main problem with this approach is that
the Jacobian matrix, J , is almost never symmetrical, or even square. To solve
this system then, we need to adapt a conjugate gradient solver to handle non-
square matrices. Witkin and Kass recommend adapting the conjugate gradient
method mentioned in Section 7.1 to use the pseudo-inverse of the matrix J . [14]
suggests using the generalized minimum residual method described in [17]. I
chose, however, to implement the LSQR method presented in [7] mainly because
Fortran code was available.

The Witkin and Kass approach worked better than Cohen’s method but
also was unable to solve large problems. Mostly this was because the Hessian
matrix H was often extremely ill-conditioned. I attempted various techniques
to fix this such as normalizing the rows of H , damping the solution process, and
using a preconditioner matrix, but could not get anything to work.

7.3 Miscellaneous Details

When evaluating the values and gradients of the all expressions used with a
given optimization method, one of the easiest things to forget was to correctly
set the time variable t for the quantity being evaluated. In my implementation,
all constraints are defined only at a specific time. In order to correctly evaluate
the constraint expression, it is necessary to set the time variable to the constraint
time prior to performing any calculations. Similarly, the objective function is
defined as an integral over the entire time range of the animation. I evaluate
it by looping through the time range and calculating the value of the objective
function at discrete sample times.

Also, all the spacetime papers recommend taking advantage of the sparsity
of the matrices which arise during the solution process. Thus, I implemented
a sparse matrix class as described in [14]. Based on a trial optimization step

15

with random values of the independent variables, it conservatively estimates
the sparsity of a given n × n matrix of doubles, and creates a sparse matrix
of doubles with a fixed sparsity pattern. The only operations supported by
this class are multiplication of a vector, and multiplication of a vector by the
transpose, as required by the CG solver algorithms described above.

8 Results

I created two main types of spacetime problems to test the performance of my
system. First I got everything working really well for a simple particle, and
then immediately tried to apply my program to a 4-bone jumping Luxo lamp.
The particle typically worked very well and its results were always encouraging.
It demonstrated that all the various parts of my program worked in the way I
thought they should. Luxo, on the other hand, was a problem of such greater
magnitude than the particle that I never was able to get it working correctly. In
retrospect, I probably should have progressed through a sequence of simpler test
actors before attempting to implement Luxo. A gradual approach would have
allowed me to work out bugs in a more systematic way. But I was impatient,
so I pressed onward.

8.1 The Particle

The test particle consists of a small sphere object attached to the end of a chain
of three “virtual” bones, which allow motion in all three spatial dimensions.
The particle has a constant mass and inertia tensor. Gravity can be applied
to it, as well as a force resulting from contact with the ground plane. Typical
optimization problems consist of finding the motion which interpolates some
number of test points with minimum force. Particle problems generally consist
of about 300–500 expressions.

Results from these tests confirmed that the numerical optimization, symbolic
expression framework and rigid body dynamics were all working correctly, at
least for simple problems. The particle always successfully moved through the
trial points in an increasingly smooth manner. Turning on gravity caused the
particle’s path to visibly sag between test points, as was expected.

Figure 7 illustrates the starting and ending configurations of a sample par-
ticle problem. The solution process is initialized with all control points of the
particle’s b-splines set to zero. After a single iteration, the animation satisfies
the constraints but contains a lot of wasteful motion. Only the control points
which directly affect the constraints have been significantly modified. In the
converged solution, however, nearly all the control points have been modified to
create a much smoother motion. The force exerted by the particle in the final
solution, then, is successfully minimized.

Both numerical optimizers successfully solved the particle problem. Co-
hen’s method, however, was significantly slower than Witkin and Kass’ method.
This is most likely because the line search used in Cohen’s method was ex-

16

0.0 1.0Time 0.0 1.0Time

X Position

Y Position

Z Position

X Position

Y Position

Z Position

-2.0

0.0

2.0

Figure 7: An example of a particle problem. The position of the particle is
constrained to be (0, 0, 0) at time t = 0, (2, 1, 1) at t = 1

2 and (−2, 2, 1) at t = 1.
The objective function is the force needed to move the particle. On the left
is the solution obtained after one iteration of Witkin and Kass’ optimization
method. The final solution is shown on the right. The particle is displayed at
intervals of ∆t = 1

20 . The camera is positioned looking roughly along the −Z
axis.

17

Figure 8: Luxo

tremely inexact, so convergence towards the solution progressed more slowly.
In both methods, however, all linear systems were solved in comparable time
with equally acceptable error estimates.

8.2 Luxo

Luxo is a significantly more complicated problem than the particle. Luxo is an
animate lamp consisting of a base, two “arm” bones and a head. It also has
x and y “virtual” bones which allow the base to move freely in the xy plane.
Each real bone has an associated constant mass and inertia tensor. Gravity is
always applied to it, and there is an additional upwards external force exerted
on the base when it is resting on (or accelerating downwards into) the ground.

A typical Luxo problem is to get it to move from (−1, 0, 0) to (1, 0, 0) using
as little force as possible. This is the same problem that Witkin and Kass were
able to solve. In principle, the correct solution is for Luxo to perform a jumping
motion from the starting position to the ending position. Unfortunately, my
system is currently unable to solve this problem.

Luxo problems generally involve around 20,000 expressions. Because this is
orders of magnitude larger than the simple particle problem, there are many,
many more sources of numerical instability. In particular, the objective and
constraint functions are extremely nonlinear, and it is very easy for an SQP
solver to quickly blow up if nearly-exact line searches are not used. Also, the
matrices formed in the various linear systems solved during the SQP solution
process are often very ill-conditioned, so it is difficult for a CG method to de-
termine the correct step direction. Even if the solution process works correctly,

18

the number of iterations required to converge to a solution will be drastically
higher than in the particle case. Because the larger expressions involved in a
Luxo problem also take longer to evaluate, the solution process proceeds very
slowly, making it difficult to test and debug. I did obtain a few solutions to
the Luxo problem which looked promising, and which hinted that I was very
close to getting it working. If I had more time to work on this problem, I am
convinced that I could solve it eventually.

9 Conclusion

Currently my spacetime constraints implementation is not completely func-
tional. While it works well for small systems, it is not capable of solving large
spacetime problems. This is mainly due to instabilities in the various numerical
optimization procedures which I implemented. Because the optimization was
the last part of the system which I wrote, I did not have sufficient time to get
it completely debugged. I do think, however, that the system I have imple-
mented would be capable of solving problems of Luxo’s complexity if I spent
longer working on it. Everything besides the numerical optimization is func-
tional. Therefore, were I to continue working on it, my first step would be try
using third-party software to perform the optimization. Hopefully a well-tested
optimization package such as Matlab or Maple would perform better than my
own code.

Even if I never complete the project, though, I have learned a great deal
about how to correctly implement spacetime constraints. I made a few bad
decisions early on which I would not make again were I to attempt to write
a new implementation from scratch. For example, I greatly underestimated
the size of the expression graphs generated by complicated spacetime problems.
Were I to write this program again, I would place a much greater emphasis on
an expression representation which was memory-efficient. This would mean not
using the STL at all in the symbolic math package.

I also assumed that a modern computer would be sufficiently fast to eval-
uate enormous expression graphs on the fly. It turned out that often traversal
of the expression graphs was extremely slow. Therefore, I now think that the
expression graphs should only be used during a precomputation phase to gener-
ate compilable code, as Witkin and Kass suggested in their original paper [19].
This would greatly speed up the evaluation of the various dynamics quantities
needed by the optimizer.

Other things that I would like to try in order to improve performance are
implementing second-order automatic differentiation, and using a faster formu-
lation of the dynamics equations (e.g., Balafoutis’ [1]).

Overall, though, I am decently satisfied with my results. While it is dis-
appointing that I could not get Luxo to jump, I am very happy that at least
the particle problem works correctly. Obtaining that simple result involved
a lot of work, and the particle’s success alone makes this project worthwhile.
Academically, I am pleased with the amount of new material that this project

19

introduced me to. I was forced to learn a lot about subjects of which I had had
no previous knowledge (e.g., mathematical programming, rigid body dynamics,
numerical optimization), and feel as though I am now partially conversant in
many of them. Implementing spacetime constraints was an extremely beneficial
experience, regardless of the results. I am fortunate, and thankful, to have had
this opportunity.

20

References

[1] C.A. Balafoutis, R.V. Patel: Dynamic Analysis of Robot Manipulators: A
Cartesian Tensor Approach, Kluwer Academic Publishers, 1991.

[2] L.S. Brotman, A.N. Netravali: Motion interpolation by optimal control. In
Proceedings of SIGGRAPH ’88, Vol. 22, ACM, pp. 309-315, 1988.

[3] S. Chenney, D.A. Forsyth: Sampling constrained animations ???

[4] M. Cohen: Interactive spacetime control for animation, Proceedings of SIG-
GRAPH ’92, ACM, 1992.

[5] J. Denavit, R.S. Hartenburg: A kinematic notation for lower-pair mecha-
nisms based on matrices, ASME Journal of Applied Mathematics, vol. 23,
1955.

[6] R. Featherstone: Robot Dynamic Algorithms, Kluwer Academic Publishers,
1987.

[7] C.C. Paige, M.A. Saunders: LSQR: An algorithm for sparse linear equa-
tions and sparse least squares. ACM Transactions on Mathematical Soft-
ware, vol. 8, ACM, 1982.

[8] P.E. Gill, W. Murray, M.H. Wright: Practical Optimization, Academic
Press, 1981.

[9] M. Gleicher: Motion editing with spacetime constraints, 1997 Symposium
on Interactive 3D Graphics, ACM, 1997.

[10] M. Gleicher: Retargeting motion to new characters, Proceedings of SIG-
GRAPH ’98, ACM, 1998.

[11] A. Griewank: On automatic differentiation, Mathematical Programming:
Recent Developments and Applications, Kluwer Academic Publishers, 1989.

[12] J.T. Ngo, J. Marks: Spacetime constraints revisited Proceedings of SIG-
GRAPH ’93, ACM, 1993.

[13] Z. Popovic, A. Witkin: Physically based motion transformation, Proceed-
ings of SIGGRAPH ’99, ACM, 1999.

[14] W.H. Press, B. Flannery: Numerical Recipes: The Art of Scientific Com-
puting, Cambridge University Press, 1986.

[15] G. Rodriguez: Kalman filtering, smoothing and recursive robot arm for-
ward and inverse dynamics, IEEE J. of Robotics and Automation, Vol.
RA-3, No. 6, pp. 624-639, 1987.

[16] C. Rose, B. Guenter, B. Bodenheimer, M. Cohen: Efficient generation of
motion transitions using spacetime constraints, Proceedings of SIGGRAPH
’96, ACM, 1996.

21

[17] Y. Saad, M.H. Schulz: GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM Journal on Scientific and
Statistical Computing, vol. 7, 1986.

[18] D. Tang, J.T. Ngo, J. Marks: N-body spacetime constraints Journal of
Visualization and Computer Animation, 1995.

[19] A. Witkin, M. Kass: Spacetime constraints, Proceedings of SIGGRAPH
’88, ACM, 1988.

22

